Sie sind hier: Startseite Personal Mitarbeiter Dr. Makan Karegar

Dr. Makan Karegar




Dr. Makan Karegar

  • Function:

Research Associate

  • E-mail:

[Email protection active, please enable JavaScript.]

  • Telephone :

+49 228 73-6160

  • Fax:

+49 228 73-3029

  • Room :


  • Address :

Institute of Geodesy and Geoinformation

Nussallee 15

D-53115 Bonn

Professional profile

Jan. 2022 - Present: Member of Collaborative Research Centre 1502,

Aug. 2018 - Present: Research Associate at the Institute of Geodesy and Geoinformation (Astronomical Physical and Mathematical Geodesy Group), University of Bonn.

Jun. 2018: Ph.D. in Geology, School of Geosciences, University of South Florida, Tampa, USA.

Jun. 2016 - Aug. 2018: Visiting Researcher at the Institute of Geodesy and Geoinformation (Astronomical Physical and Mathematical Geodesy Group), University of Bonn.

Aug. 2012 - Aug. 2018 : Doctoral student in Geosciences, University of South Florida, School of Geosciences, Tampa, USA.

Oct. 2006 - Aug. 2009: M.Sc. in Geodesy, Khajeh Nasir Toosi University of Technology, Faculty of Geodesy and Geomatics Engineering, Tehran, Iran.

Research interests

  • Earth's surface deformation and its interactions with human activities and climate changes

  • Regional sea-level rise

  • Global Navigation Satellite System (GNSS)



  • M.Sc. level: Geodetic Earth Observation (Winter, 2019, 2020, 2021, 2022), Advanced Data Analysis: Physical Geodesy (Summer, 2019, 2020, 2021, 2022), Mass Transport Modelling and Monitoring (one lecture on Coastal Subsidence, Summers 2018 - 2021), Satellite Geodesy and Earth System (two lectures on GNSS, Winter 2019, 2020, 2021), Profile Fundamentals (Winter, 2019)

Past and current students

BSc thesis:

  • Nadja Jonas (2019, Concepts for Retrieving Sea-level Change from GPS Interferometric Reflectometry)
  • Carolin Köß (2021, Analysing Seismic Signals Collected by the Raspberry Shake in Todenfeld, Germany)

MSc thesis:

  • Christian Mielke (2021, The Quantification of Drought and Water Loss using GNSS)
  • Waruna Don (2021, How fast are Western Tropical Pacific Islands uplifting? Geodetic constraints from GPS, Satellite Altimetry and Tide Gauge)
  • Mingyao Li (2022, AVGR: A Python-based Framework for Estimating Linear Rate Uncertainty in Geodetic Time Series using Allan Variance)
  • Meryem Aydin (2022, From Static GNSS Positioning to Measuring Flooding)
  • Alonso Vega Fernandez (2022, GNSS-IR)

PhD students: 

  • Soran Parang (2020 - present, Co-supervisor: Towards an improved understanding of vertical land motion and sea-level change in eastern North America). Department of Earth and Environmental Sciences, University of Ottawa, Canada.
  • Artur Fischer (2022/6 - 2022/8, Supervising research visit: Real-time monitoring of river level with a low-cost GNSS receiver). Department of Geodesy, University of Warmia and Mazury in Olsztyn, Poland.

Student assistant(s):

  • Waruna Don (2021, 1. Compiling Sediment Compaction Data. 2. Assembling RPR Sensors)
  • Sree Ram R. Krishnan (2022, SWOT for river hydrology)
  • Simran Suresh (2022, SWOT for river hydrology)


  • Sefton, J., Kemp, A.C., Engelhart, S., Ellison, J.C., Karegar, M.A., Charley, B., McCoy, M.D. (2022). Implications of Anomalous Relative Sea-level Rise for the peopling of Remote Oceania, Proceedings of National Academy of Sciences, 119 (52), e2210863119,

  • Karegar, M.A., Kusche, J., Nievinski, F.G., Larson, K.M. (2022). Raspberry Pi Reflector (RPR): a Low-cost Water-level Monitoring System based on GNSS Interferometric Reflectometry, Water Resources Research, 58, e2021WR031713,

  • Karegar, M.A., Kusche, J. (2020). Imprints of COVID‐19 Lockdown on GNSS Observations: An Initial Demonstration Using GNSS Interferometric Reflectometry. Geophysical Research Letters, 47 (19),

  • Karegar, M.A., Larson, K.M., Kusche, J., Dixon., T.H. (2020). Novel quantification of shallow sediment compaction by GPS interferometric reflectometry and implications for flood susceptibility, Geophysical Research Letters, 47(14), e2020GL087807.

  • Klos, A., Karegar, M.A., Kusche, J., Springer, A. (2020). Quantifying noise in daily GPS height time series: harmonic function versus GRACE-assimilating modeling approaches, IEEE Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2020.2983045

  • Springer, A., Karegar, M.A., Kusche, J., Kurtz, W., Keune, J., Kollet, S. (2019). Evidence of daily hydrological loading in GPS time series over Europe. Journal of Geodesy, 93(10), 2145-2153,

  • Karegar, M.A. (2018). Theory and Application of Geophysical Geodesy for Studying Earth's Surface Deformation. Graduate Theses and Dissertations, School of Geosciences, University of South Florida, Tampa, USA, P. 242, June 2018.

  • Karegar, M.A., Dixon, T. H., Kusche, J., Chambers, D. P. (2018). A new hybrid method for estimating hydrologically induced vertical deformation from GRACE and a hydrological model: An example from Central North America. Journal of Advances in Modeling Earth Systems, 10.

  • Karegar, M.A., Dixon, T., Malservisi, R., Kusche, J., Engelhart, S. (2017) Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion. Nature Scientific Reports, 7, doi.10.1038/s41598-017-11544-y

  • Dixon T.H., Karegar M.A. (2017). Coastal Subsidence: Harbinger of Future Flooding?, Speaking of Geoscience, The Geological Society of America’s Guest blog

  • Karegar, M.A., Dixon, T.H., & Engelhart, S.E. (2016). Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data. Geophysical Research Letters43(7), 3126-3133. doi:10.1002/2016GL068015

  • Karegar, M.A., Dixon, T.H., & Malservisi, R. (2015). A three-dimensional surface velocity field for the Mississippi Delta: Implications for coastal restoration and flood potential. Geology43(6), 519-522. doi:G36598.1

  • Karegar, M.A., Dixon, T.H., Malservisi, R., Yang, Q., Hossaini, S.A., & Hovorka, S.D. (2015). GPS-based monitoring of surface deformation associated with CO 2 injection at an enhanced oil recovery site. International Journal of Greenhouse Gas Control41, 116-126. doi:

  • Marshall, A., Connor, C., Kruse, S., Malservisi, R., Richardson, J., Courtland, L., ... & Karegar, M.A. (2015). Subsurface structure of a maar–diatreme and associated tuff ring from a high-resolution geophysical survey, Rattlesnake Crater, Arizona. Journal of Volcanology and Geothermal Research304, 253-264. doi:

  • Eshagh, M., & Karegar, M.A. (2012). Software for generating gravity gradients using a geopotential model based on an irregular semivectorization algorithm. Computers & geosciences39, 152-160. doi:

  • Karegar, M.A., & Alamdari, M. (2011). Application of Molodensky's Method for Precise Determination of Geoid in Iran. Journal of Geodetic Science1(3), 259-270.  doi:

  • Eshagh, M., & Karegar, M.A. (2010). Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data. Earth Science Informatics3(3), 149-158. doi: s12145-010-0062-3

  • Eshagh, M., & Karegar, M.A. (2009). The effect of geopotential perturbations of GOCE on its observations-A numerical study. Acta Geodaetica et Geophysica Hungarica44 (4), 385-398. doi: AGeod.44.2009.4.2

  • Eshagh, M., Karegar, M.A. , & Najafi-Alamdari, M. (2008). Simplification of geopotential perturbing force acting on a satellite. Artificial Satellites43 (2), 45-64. doi:

Selected featured research in public media